先看进程间的互斥。在linux内核中主要通过semaphore机制和spin_lock机制实现。主要的区别是在semaphore机制中,进不了临界区时会进行进程的切换,而spin_lock刚执行忙等(在SMP中)。先看内核中的semaphore机制。前提是对引用计数count增减的原子性操作。内核用atomic_t的数据结构和在它上面的一系列操作如atomic_add()、atomic_sub()等等实现。(定义在atomic.h中)semaphone机制主要通过up()和down()两个操作实现。semaphone的结构为:
|
相应的down()函数为:
|
相应的up()函数为:
|
假设开始时,count=1;sleepers=0。当进程A执行down()时,引用计数count--,如果这时它的值大于等于0,则从down()中直接返回。如果count少于0,则A的state改为TASK_INTERRUPTIBLE后进入这个信号量的等待队列中,同时使sleepers++;然后重新计算count=sleepers - 1 + count,若这时引用计数仍小于0(一般情况下应为-1,因为count = - sleepers,不过在SMP结构中,期间别的进程可能执行了up()和down()从而使得引用计数的值可能变化),则执行进程切换。
当进程A又获得机会运行时,它先执行wake_up(&sem->wait)操作,唤醒等待队列里的一个进程,接着它进入临界区,从临界区出来时执行up()操作,使sem->count++,(如果进程A是从down()中直接返回,因为这时等待队列一定为空,所以它不用执行wake_up()操作,直接进入临界区,在从临界区出来时一样执行up()操作,使 sem->count++)。这时如果count的值小于等于0,这表明在它在临界区期间又有一个进程(可能就是它进入临界区时唤醒的那个进程)进入睡眠了,则执行wake_up()操作,反之,如果count的值已经大于0,这表明在它在临界区期间没有别的进程(包括在它进入临界区时被它唤醒过的那个进程)进入睡眠,那么它就可以直接返回了。
从被唤醒的那个进程看看,如果在唤醒它的进程没执行up()之前它就得到了运行机会,这时它又重新计算count=sleepers - 1 + count=-1;从而sleepers被赋值1;这时它又必须进行调度让出运行的机会给别的进程,自己去睡眠。这正是发生在唤醒它的进程在临界区时运行的时候。如果是在唤醒它的进程执行了up()操作后它才得到了运行机会,而且在唤醒它的进程在临界区期间时没别的进程执行down(),则count的值在进程执行up()之前依然为0,这时在up()里面就不必要再执行wake_up()函数了。可以通过一个例子来说明具体的实现。设开始sem->count=sem->sleepers=0。也就是有锁但无等待队列 (一个进程已经在运行中)。先后分别进行3个down()操作,和3个up()操作,如下:为了阐述方便,只保留了一些会改变sleepers和count值的步骤,并且遵循从左到右依次进行的原则。
|
|
当然,还有另一种情况,就是up()操作和down()操作是交*出现的,一般的规律就是,如果进程在临界区期间又有进程(无论是哪个进程,新来的还是刚被唤醒的那个)进入睡眠,就会令count的值从0变为-1,从而进程在从临界区出来执行up()里就必须执行一次wake_up(),以确保所有的进程都能被唤醒,因为多唤醒几个是没关系的。如果进程在临界区期间没有别的进程进入睡眠,则从临界区出来执行up()时就用不着去执行wake_up()了(当然,执行了也没什么影响,不过多余罢了)。而为什么要把wake_up()和count++分开呢,可以从上面的up1看出来,例如,进程2第一次得到机会运行时,本来这时唤醒它的进程还没执行up()的,但有可能其它进程执行了up()了,所以真有可能会发现count==1的情况,这时它就真的不用睡觉了,令count=sleepers=0,就可以接着往下执行了。还可看出一点,一般的,( count ,sleepers)的值的取值范围为(n ,0)[n>0] 和(0 ,0)和 (1 ,-1)。下边看看spin_lock机制。
Spin_lock采用的方式是让一个进程运行,另外的进程忙等待,由于在只有一个cpu的机器(UP)上微观上只有一个进程在运行。所以在UP中,spin_lock和spin_unlock就都是空的了。在SMP中,spin_lock()和spin_unlock()定义如下:
|
一般是如此使用:
|
可以看出,它和semaphore机制解决的都是两个进程的互斥问题,都是让一个进程退出临界区后另一个进程才进入的方法,不过sempahore机制实行的是让进程暂时让出CPU,进入等待队列等待的策略,而spin_lock实行的却是却进程在原地空转,等着另一个进程结束的策略。
下边考虑中断对临界区的影响。要互斥的还有进程和中断服务程序之间。当一个进程在执行一个临界区的代码时,可能发生中断,而中断函数可能就会调用这个临界区的代码,不让它进入的话就会产生死锁。这时一个有效的方法就是关中断了。
|
对于UP来说,上面已经是足够了,不过对于SMP来说,还要防止来自其它cpu的影响,这时解决的方法就可以把上面的spin_lock机制也综合进来了。
|
前面说过,对于UP来说,spin_lock()是空的,所以以上的定义就一起适用于UP 和SMP的情形了。
|
就是spin_lock的一个小小的变型而己了。
自由广告区 |
分类导航 |
邮件新闻资讯: IT业界 | 邮件服务器 | 邮件趣闻 | 移动电邮 电子邮箱 | 反垃圾邮件|邮件客户端|网络安全 行业数据 | 邮件人物 | 网站公告 | 行业法规 网络技术: 邮件原理 | 网络协议 | 网络管理 | 传输介质 线路接入 | 路由接口 | 邮件存储 | 华为3Com CISCO技术 | 网络与服务器硬件 操作系统: Windows 9X | Linux&Uinx | Windows NT Windows Vista | FreeBSD | 其它操作系统 邮件服务器: 程序与开发 | Exchange | Qmail | Postfix Sendmail | MDaemon | Domino | Foxmail KerioMail | JavaMail | Winwebmail |James Merak&VisNetic | CMailServer | WinMail 金笛邮件系统 | 其它 | 反垃圾邮件: 综述| 客户端反垃圾邮件|服务器端反垃圾邮件 邮件客户端软件: Outlook | Foxmail | DreamMail| KooMail The bat | 雷鸟 | Eudora |Becky! |Pegasus IncrediMail |其它 电子邮箱: 个人邮箱 | 企业邮箱 |Gmail 移动电子邮件:服务器 | 客户端 | 技术前沿 邮件网络安全: 软件漏洞 | 安全知识 | 病毒公告 |防火墙 攻防技术 | 病毒查杀| ISA | 数字签名 邮件营销: Email营销 | 网络营销 | 营销技巧 |营销案例 邮件人才:招聘 | 职场 | 培训 | 指南 | 职场 解决方案: 邮件系统|反垃圾邮件 |安全 |移动电邮 |招标 产品评测: 邮件系统 |反垃圾邮件 |邮箱 |安全 |客户端 |